橋梁改建可以減少主要開發(fā)商的初期投資成本(包括拆除成本,土建成本等),縮短工期,體現(xiàn)更高的經(jīng)濟(jì)價值。目前,橋梁加固設(shè)計(jì)與計(jì)算的研究還相對滯后。在某些方面,甚至無法使用公認(rèn)的算法,這使設(shè)計(jì)人員難以上手。除了扎實(shí)的專業(yè)知識,橋梁加固設(shè)計(jì)人員還應(yīng)該具有豐富的設(shè)計(jì)經(jīng)驗(yàn)和豐富的施工經(jīng)驗(yàn)。完整的設(shè)計(jì)施工圖更加合理,**,逼真,施工質(zhì)量容易**,幾乎沒有改動和變化。 ,成本合理,加固效果好。它不僅可以**“臨時”,而且可以盡可能地對待“根”。
如果只有施工經(jīng)驗(yàn),則生成的加固方案和施工圖可能缺乏對結(jié)構(gòu)的系統(tǒng)應(yīng)力分析以及對疾病成因和趨勢的分析。通常,加固的零件沒有得到足夠的加固,或者過多的加固,不需要加固的區(qū)域也得到加固,造成更多的后果?;ㄥX后,加固效果不好。許多設(shè)計(jì)師在加固材料的數(shù)量上相對隨意。有很多人根據(jù)經(jīng)驗(yàn)和看法使用材料。不管是浪費(fèi)材料還是沒有達(dá)到星聚的加固效果,它們對自己都不了解,業(yè)主也不知道,而且大多數(shù)人都沒有做任何事情。對于鋼筋計(jì)算,一些高素質(zhì)的設(shè)計(jì)單位只對鋼筋加固前的結(jié)構(gòu)進(jìn)行一些重新檢查,而對于鋼筋加固后的承載力多進(jìn)行計(jì)算。但是眾所周知,成分的疾病通常表現(xiàn)在正常使用階段。承載能力主要表明組件是否安全。可以安全使用的組件并非沒有疾病。因此,必須計(jì)算每種材料在截面上的應(yīng)力強(qiáng)度以反映部件。是否有疾病,有多少及其發(fā)展趨勢。
“應(yīng)力強(qiáng)度的計(jì)算是反映組件疾病的必要基礎(chǔ),而承載力的計(jì)算則是安全使用組件的終**。”兩者都是必不可少的。在實(shí)際的鋼筋計(jì)算中,通常似乎承載力的終狀態(tài)滿足要求,但部件中確實(shí)存在許多疾病。因此,一種方法是增加車輛的設(shè)計(jì)負(fù)荷,以使承載能力不能滿足要求,但是缺乏**的過載數(shù)據(jù)。另一種方法是根據(jù)各種疾病和程度,通過一些算法獲得各種折減系數(shù),并對承載力進(jìn)行折減以表明該組件不滿足承載力要求。組件加固后,將補(bǔ)充大于或等于減小的承載能力的承載能力。盡管該方法具有一定的科學(xué)依據(jù),但也存在許多人為的判斷因素,這些因素也不能反映控制部件上各種物料的工作條件。
(1)通常在中跨附近從底部到頂部有多個垂直裂縫,靜態(tài)裂縫的寬度可能超過規(guī)格極限值,有時會在中跨出現(xiàn)撓曲,表明抗彎強(qiáng)度不足。
(2)一般情況下,平板的底部在中跨附近可能會出現(xiàn)多個縱向裂紋,并且某些靜態(tài)裂紋的寬度將超過規(guī)格要求。這可能是因?yàn)樵O(shè)計(jì)圖采用了預(yù)制的標(biāo)準(zhǔn)圖鋼筋,但在施工過程中使用了它?,F(xiàn)澆將單向板轉(zhuǎn)變?yōu)橐惑w的雙向板,從而改變了板的受力模式,從而導(dǎo)致板底部的橫向鋼筋嚴(yán)重短缺,并導(dǎo)致底部的縱向裂縫板在橫向彎矩作用下的應(yīng)力。
(2)可能還會有支撐空隙。由于每個平板的每個末端都有2個支撐,因此每個橋都有更多支撐。如果在施工過程中支撐墊石的高度不**,或者在安裝過程中預(yù)制板的翹曲或墩臺的不均勻沉降將導(dǎo)致某些支撐物變空;
(4)縱向裂紋出現(xiàn)在平板的底部。大多數(shù)預(yù)應(yīng)力混凝土制成的簡支平板橋都是通過預(yù)應(yīng)力構(gòu)造的。如果底板由于施工而太薄,則預(yù)應(yīng)力筋周圍的混凝土局部應(yīng)力太大,或者由于氯化物添加劑或混凝土碳化會導(dǎo)致鋼筋生銹,從而可能導(dǎo)致沿鋼筋混凝土底部的縱向裂縫。鋼筋。
(5)普通空心板在支撐端附近沒有剪切斜裂縫。然而,近年來,一些橋梁采用了寬度為1.5米或更大的大型空心板,這實(shí)際上相當(dāng)于一個小箱形梁。當(dāng)板的厚度不大時,在側(cè)板的腹板上可能會發(fā)現(xiàn)傾斜的裂縫。
(1)對于在板底部產(chǎn)生的縱向和橫向裂紋,當(dāng)裂紋的寬度超過規(guī)格限制時,可以通過粘貼鋼板法或粘貼纖維復(fù)合材料法進(jìn)行加固。但是它不能**解決跨跨撓度問題。
(2)預(yù)應(yīng)力加固方法,將多條平行的預(yù)應(yīng)力細(xì)鋼絲錨定在板的底部,然后在張緊后用特殊混凝土覆蓋(將多條預(yù)應(yīng)力鋼絲錨固在板的底部),或設(shè)置轉(zhuǎn)向支架和然后將折線形的鋼束拉緊拉力,將預(yù)應(yīng)力鋼纜通過兩個端板的斜孔錨固在鋪裝層下(外部預(yù)應(yīng)力鋼纜以虛線布置)。
(3)更改結(jié)構(gòu)系統(tǒng)方法,例如將簡單支撐的平板更改為連續(xù)平板,對于小跨度的平板橋梁,可以在跨度的中間或附近添加橋墩或斜撐。請注意,在中間支點(diǎn)的負(fù)彎矩區(qū)域中,應(yīng)結(jié)合橋面板的重建添加足夠的抗拉鋼筋。以上兩種方法對解決中跨撓度有較好的效果。
(4)錨定噴射混凝土加固方法,將鋼網(wǎng)錨定在板的底部,然后噴射混凝土覆蓋。本質(zhì)上是要在板的底部增加鋼筋,這類似于“在板的底部錨定多條預(yù)應(yīng)力鋼絲”的示意圖,不同之處在于在板的底部添加了普通鋼網(wǎng)。
鋼筋混凝土和預(yù)應(yīng)力混凝土連續(xù)平板橋通常采用實(shí)心平板或空心平板截面,并且大多數(shù)為現(xiàn)澆結(jié)構(gòu)??缍刃∮?0米。預(yù)應(yīng)力混凝土連續(xù)板跨度較大。通常,采用后張法。那些高度相等,而高度可變。立交橋和人行天橋在城市橋梁中有更多的應(yīng)用。鋼筋混凝土連續(xù)板有更多的應(yīng)用。
(1)在鋼筋混凝土連續(xù)平板橋的每個跨度的中間附近,平板底部附近從底部到頂部有多個垂直裂縫,這些裂縫可能會在橫向方向上滲透,這是彎曲裂縫,表明抗彎強(qiáng)度不足;
(2)鋼筋混凝土連續(xù)平板橋各墩頂部的橋面開裂,橋下的滲水一般水平滲透。如圖所示,可能存在一個或多個裂紋,這可能是由于活荷載或橋墩沉降不均勻引起的,這表明負(fù)彎矩很大,并且支點(diǎn)截面的抗彎能力不足。
(3)縱向裂縫出現(xiàn)在每個跨度中間附近的平板底部,類似于“整體式平板橋中跨的平板底部縱向裂縫”。鋼筋混凝土樓板的底部沒有足夠的橫向鋼筋,或者混凝土蓋太薄且受到預(yù)應(yīng)力。鋼筋周圍的混凝土局部應(yīng)力太大,或者混凝土中的添加劑導(dǎo)致鋼筋生銹,在鋼筋上引起裂紋;
(4)改變結(jié)構(gòu)體系方法,例如在跨度中間或附近增加斜支撐,以解決跨度中間過度向下?lián)锨蝾A(yù)應(yīng)力不足的問題,類似于下圖,但拉力為支撐部分的負(fù)彎矩區(qū)域應(yīng)增強(qiáng)鋼筋。
鋼筋混凝土和預(yù)應(yīng)力混凝土簡支梁是所有操作中橋數(shù)量多的梁橋,其橫截面形式通常包括T形,I形,箱形以及各種形式的組合。鋼筋混凝土簡支梁的跨度通常為10至20米,而預(yù)應(yīng)力混凝土簡支梁的跨度通常為16至50米,其中少數(shù)是較大的。大多數(shù)施工方法采用預(yù)制裝配,少數(shù)采用現(xiàn)澆施工。由于具有肋形橫截面,因此自重更輕,彎曲能力和跨度比平板橋大,并且疾病種類更多。
(1)中跨附近梁底部的垂直彎曲裂紋的數(shù)量隨跨度的增加而增加。靜載荷裂紋的寬度可能會超過指定的極限值,并且某些裂紋會在中跨度中產(chǎn)生過大的下偏角;
(3)梁腹板上的垂直裂縫大部分位于薄腹板的中間。中間兩端寬而細(xì)。它們不會向上或向下延伸。大部分混凝土維護(hù)不善,或者腹板上的溫度或水平肋骨太少。其他原因引起的收縮裂紋主要影響結(jié)構(gòu)的耐久性;
(4)在預(yù)制T型梁橋的法蘭鉸接或橫向損壞的預(yù)制T型梁橋中,橋面板上沿翼緣板連接處的縱向裂縫更為常見。這種疾病會引起惡性循環(huán),加重單束其他疾病的程度。
如果是根據(jù)B型預(yù)應(yīng)力混凝土構(gòu)件的一部分設(shè)計(jì)的簡支梁,則可能存在鋼筋混凝土簡支梁的某些病害,但程度不同,因此不再贅述。但是它也有一些常見的疾病,即**預(yù)應(yīng)力混凝土簡支梁。對于**預(yù)應(yīng)力和部分預(yù)應(yīng)力的A類混凝土構(gòu)件,在正常使用條件下不允許出現(xiàn)裂縫。如果發(fā)生這種情況,無論關(guān)節(jié)的寬度如何,都應(yīng)找到原因進(jìn)行治療或加強(qiáng)。
預(yù)應(yīng)力混凝土簡支梁不同于鋼筋混凝土簡支梁的其他常見疾?。?/div>
(1)可以通過粘貼鋼板和粘貼纖維復(fù)合材料,或者通過增加截面方法來增加鋪路層的厚度并增加厚度,來增強(qiáng)梁底部的彎曲裂紋和沿預(yù)應(yīng)力筋的縱向裂紋。該部分的壓縮區(qū)域。該區(qū)域有利于增加彎曲強(qiáng)度和剛度,但是高度的增加受到限制,同時自重也增加了。如果梁底部的高度增加,則加固實(shí)際上會增加;
(2)對于腹板上的傾斜裂紋,可將鋼板或纖維復(fù)合材料粘貼在與裂紋相反的方向上,并與水平線成大約45°角,即與傾斜裂紋大致正交的方向。光束高度低,并且將鋼板或纖維錨固。當(dāng)長度不足時,可以以U形箍和壓條的形式粘貼。
(3)對于腹板上的收縮裂縫和錨固區(qū)域的裂縫,根據(jù)接縫的寬度,使用環(huán)氧膠堵住或填充接縫;
(5)對于因力引起的上述各種疾病,可以采用外部預(yù)應(yīng)力加強(qiáng)方法。有許多特定的方法。該方法的設(shè)計(jì)和構(gòu)造復(fù)雜,但效果較好。
(6)對于病多,重的單根梁,在條件允許的情況下,可通過剪斷橫梁來代替剛度更高的新梁,同時減少其他梁的載荷分布。如圖所示,在大多數(shù)情況下,邊緣光束嚴(yán)重病變。
5.鋼筋混凝土和預(yù)應(yīng)力混凝土連續(xù)梁和懸臂梁橋
連續(xù)梁橋和懸臂梁橋的橫截面通常為T形,I形和箱形。 30米以上的大多數(shù)跨度是箱形的,并且使用了可變高度的不等跨度的梁。通常使用等高鋼筋混凝土連續(xù)梁。跨度小于30米的鋼筋混凝土連續(xù)梁或懸臂梁的跨度通常小于50米。這種使用大跨度鋼筋混凝土材料的橋梁價格昂貴,橋面的負(fù)彎矩區(qū)域也很容易。出現(xiàn)橫向裂縫。高度恒定的預(yù)應(yīng)力混凝土連續(xù)梁的跨度通常在60米以下,而高度可變的預(yù)應(yīng)力混凝土懸臂梁通常在100米以下,但100米以上是常見的,連續(xù)梁通常在200米以下。 ,但200多米也很常見。這種類型的橋梁通常用于穿越障礙物或城市立交橋,并且無論跨度大小如何,都容易出現(xiàn)各種疾病。
常見的問題是:
(1)懸臂梁牛腿的撓度太大,墩頂?shù)臉蛎姘褰?jīng)常開裂。主要是由于懸臂剛度不足,體積小,車輛超重的影響,縱向預(yù)應(yīng)力損失大,施工質(zhì)量差等原因造成的;
(2)如下圖所示,懸臂梁的局部裂縫主要是由于鋼筋不足,高度低,溫度影響或懸梁與梁之間的連接不良所致,導(dǎo)致汽車跳動和局部過大。影響;
(3)如果懸臂梁的錨孔跨度太大,則當(dāng)其尺寸太小或鋼筋不足時,很可能在翼展的底部出現(xiàn)中跨撓度或垂直裂縫。中跨梁
(4)將預(yù)應(yīng)力筋錨固到齒形板上后出現(xiàn)傾斜裂紋。對于所有預(yù)應(yīng)力箱形梁,這都是一種可能的疾病。如下圖所示,主要原因是齒板附近的應(yīng)力集中太大,普通鋼筋的構(gòu)形太小,預(yù)應(yīng)力鋼絞線被錨固。集中過多引起的。
(5)箱形梁頂部和底部的縱向裂縫,如下圖所示,主要是由于頂板和底板的橫向彎曲力矩過大,無橫向預(yù)應(yīng)力,箱形梁橫向彎曲的空間效應(yīng)所致;板厚薄,橫向鋼筋不足,箱形梁的內(nèi)外。溫差過大會引起溫度應(yīng)力等原因;
(6)箱形梁頂部和底部的縱向裂縫。在箱形梁的頂部和底部,大量的預(yù)應(yīng)力縱向鋼絞線穿過,局部應(yīng)力過大,或者認(rèn)為箱形梁的正剪力滯后效應(yīng)還不夠。或者是由于偏心荷載作用下箱形梁的變形和扭轉(zhuǎn)而引起的腹板下端過大的局部應(yīng)力所致;
(7)箱形梁腹板中間的垂直裂縫通常在脫模后的2至3天內(nèi)發(fā)生,并且不會向上和向下延伸。預(yù)應(yīng)力后,大多數(shù)將關(guān)閉。這主要是由于混凝土的收縮或箱形梁的內(nèi)外之間的溫度差或腹板的水平加強(qiáng)。不足或與混凝土混合物的質(zhì)量有關(guān);
(8)箱梁腹板上的斜裂縫如下圖所示,通常出現(xiàn)在橋墩支點(diǎn)與倒置點(diǎn)之間的梁段中。這是一個剪切裂縫,其原因更加復(fù)雜,主要是縱向或垂直預(yù)應(yīng)力。損失不足或過多,箱梁內(nèi)部和外部之間的溫差過大,箱梁的彎曲或扭轉(zhuǎn)剛度不足,在偏心載荷下箱梁的變形應(yīng)力過大,腹板厚度小,剪切滯后效應(yīng)的影響,無-預(yù)應(yīng)力鋼筋配置不足,混凝土混合物和添加劑的影響,施工不當(dāng),縱向預(yù)應(yīng)力梁的線性布置以及跨距布置不合理。
(9)箱形梁腹板上的水平裂縫,如下圖所示,主要是由于箱形梁橫向彎曲的空間效應(yīng)和內(nèi)外溫差應(yīng)力所致,從而在箱梁上產(chǎn)生較大的豎向應(yīng)力。腹板的內(nèi)部或外部,箱形梁的橫向剛度不足以及變形應(yīng)力。 ,是由于垂直預(yù)應(yīng)力不足等原因引起的。
(10)在懸臂施工過程中,每個節(jié)段的連接處或封閉截面的連接處都有裂縫,這主要是由于施工縫的處理不善造成的,這些連接處變成薄弱的部分,在縱向彎矩,混凝土收縮或收縮的作用下開裂。溫差應(yīng)力大,或由于預(yù)制接頭不致密。橋面開裂后,接縫會滲水,鋼材也會被腐蝕。
(11)當(dāng)箱形梁較寬時,橫向隔板或橫梁中可能會出現(xiàn)垂直裂縫,如下圖所示。這主要是因?yàn)槭┘釉跈M隔板或橫梁上的橫向預(yù)應(yīng)力不足或損失太大,或者是由于梁的抗扭性差而引起的箱形。
2)鋼筋混凝土和預(yù)應(yīng)力混凝土連續(xù)梁
中跨向下過度彎曲通常伴隨著中跨梁底部的橫向裂縫,橋墩頂部的橋面板上的裂縫或傾斜的腹板裂縫。主要原因是彎曲剛度不足,例如梁高低,腹板薄和縱向預(yù)應(yīng)力。由壓力不足或過度損失引起。
其他疾病與鋼筋混凝土和預(yù)應(yīng)力混凝土懸臂梁相同。上述疾病的可選增強(qiáng)方法是:
(1)對于懸臂梁的牛腿端的偏斜,**的方法是增加預(yù)應(yīng)力。利用可變高度梁的特性,將全長無粘結(jié)預(yù)應(yīng)力電纜布置在路面層中,并錨定到牛腿上。如圖1所示,應(yīng)通過植入大量的錨桿,在橋面的預(yù)應(yīng)力在人行道層和箱梁的頂部平板之間轉(zhuǎn)移,如圖1所示。當(dāng)一個具有多個腔室且箱體高度足夠的單個箱體的橫截面時,全長的外部主體可以布置在中間腹板頂部的兩側(cè)。束固定在腹板上,如下圖2所示,但要注意對錨固孔的影響。
(2)為防止托梁出現(xiàn)裂縫,通常在兩側(cè)粘貼塊狀鋼板或鋼帶,如圖3所示。如果盒內(nèi)的托梁可以由人操作,請考慮從外部鉆一個斜孔,然后如圖4所示,通過預(yù)應(yīng)力筋將其張緊并錨固。
(3)對于連續(xù)梁中跨和懸臂梁錨固孔,底部撓度太大。**的方法是外部預(yù)應(yīng)力加固。利用可變高度梁的特性,線形或虛線形的主體被布置在盒子中的腹板的兩側(cè)。如圖1和圖2所示,外部預(yù)應(yīng)力梁得到了加固,同等高度的連續(xù)梁應(yīng)通過折線布梁進(jìn)行加固,如圖3所示。
(4)預(yù)應(yīng)力錨固齒板附近的裂縫一般在填充接頭后用薄鋼板或碳纖維等復(fù)合材料加固;
(5)對于墩頂頂部橋面的橫向裂縫,可以去除路面層的混凝土,并可以在平板頂部表面添加普通的抗拉鋼筋或未粘結(jié)的預(yù)應(yīng)力筋。如圖1所示,將預(yù)應(yīng)力鋼絞線錨固在現(xiàn)澆層中?;蛟诤凶又懈拱鍍蓚?cè)的重心軸橫截面上方設(shè)置外部預(yù)應(yīng)力電纜加強(qiáng)筋,如圖2所示。 。
(6)對于連續(xù)梁底部的橫向裂縫或分段節(jié)理處的橫向裂縫,常采用縱向粘結(jié)鋼板或碳纖維等復(fù)合材料加固;或使用外部預(yù)應(yīng)力電纜進(jìn)行加固。對于分段節(jié)中的裂縫,如果是非應(yīng)力引起的,則只需用膠水填充即可;
(7)對于箱形梁頂部和底部的縱向裂縫,通常采用橫向粘貼鋼板或其他纖維復(fù)合材料或增加橫向連接的方法來對其進(jìn)行加固。如果頂板的底面縱向開裂,則主要是由于頂板的水平跨度太大而未設(shè)置橫向預(yù)應(yīng)力所致。您可以考慮在頂部平板上方的路面層上添加橫向預(yù)應(yīng)力筋,如下圖所示,然后連接路面層和屋頂板。在它們之間植入了大量的錨桿,以傳遞橋面板的預(yù)應(yīng)力。
(8)對于箱形梁頂部和底部的縱向裂縫和腹板的豎向裂縫,可通過密封,灌漿或粘貼纖維復(fù)合材料進(jìn)行加固;
(9)對于腹板上的傾斜裂縫,可以將鋼板或纖維復(fù)合材料粘貼到腹板上,類似于下圖?;蜻m當(dāng)增加腹板的厚度,或縱向或垂直施加預(yù)應(yīng)力以加強(qiáng)腹板;
(10)對于腹板上的水平裂縫,可在腹板上粘貼垂直鋼板或纖維復(fù)合材料,或增加水平連接,例如增加橫向隔板或施加垂直預(yù)應(yīng)力加強(qiáng);
(11)對于箱形橫梁中橫隔板或橫梁的豎向裂縫,可以在橫隔板的兩側(cè)施加橫向外部預(yù)應(yīng)力,并通過箱壁錨固,如下圖所示?;蛱砑訖M向擋板以增強(qiáng)抵抗橫向彎曲和扭曲的能力。
6.預(yù)應(yīng)力混凝土T形剛性框架橋
T形剛性框架橋包括具有懸掛梁或鉸鏈的T形剛性框架以及連續(xù)的剛性框架。其主要特征是梁和墩固結(jié)在一起,但前者的上部結(jié)構(gòu)類似于懸臂梁橋,后者的上部結(jié)構(gòu)類似于連續(xù)梁橋,不同之處在于墩必須承受較大的荷載??v向彎矩。當(dāng)然,仍然存在力的差異,并且跨度也增加了很多。連續(xù)的剛性框架(如雙薄壁墩)已達(dá)到約300米。預(yù)應(yīng)力T形剛性框架橋,無論是帶有吊梁的T形剛性框架,還是連續(xù)的剛性框架,通常使用高度可變的箱形梁,預(yù)應(yīng)力懸臂梁和連續(xù)梁橋。他們也可能有問題。 ,可選的加固方法也相同。
區(qū)別在于帶有懸掛梁的T形剛性框架具有較長的懸臂。如果施工或設(shè)計(jì)質(zhì)量不佳,尤其是施工質(zhì)量較差,將導(dǎo)致很大的預(yù)應(yīng)力損失和懸臂的抗彎剛度不足。牛腿很容易出現(xiàn)。過度偏斜和其他疾病。當(dāng)使用外部預(yù)應(yīng)力電纜進(jìn)行加固時,可以將未粘結(jié)的鋼絞線布置在箱形梁頂面上的路面層中,并固定在兩端的牛腿上。在新舊混凝土之間植入了大量的錨桿,以轉(zhuǎn)移橋面。壓力,如圖所示:
當(dāng)箱形梁是具有多個腔室的單個箱形梁時,可以在中間腹板的兩側(cè)布置全長的外部預(yù)應(yīng)力電纜以進(jìn)行加固,然后在墩頂上鉆穿兩個橫向隔板,然后將其錨固到腹板兩側(cè)的錨固座上方,如圖所示:
7.鋼筋混凝土平板拱,肋拱和箱形拱橋
所謂的平板拱,肋拱和箱形拱主要是根據(jù)主拱環(huán)的截面形式來劃分的,這里主要是指甲板拱橋,其跨度可以小也可以大,小則大于10米,大的可以達(dá)到箱形肋拱。它長420米,具有各種結(jié)構(gòu)和樣式,但許多疾病大致相同。
常見的問題是:
(1)主弓環(huán)的下邊緣和側(cè)面的橫向裂紋以及弓形腳的上邊緣和側(cè)面的橫向裂紋,如下圖所示。這主要是由于這兩個部分的抗彎強(qiáng)度不足。原因有很多,例如尺寸小,加固不充分,拱軸不合理,橋墩沉降不均勻或向路堤滑動或旋轉(zhuǎn),車輛超重的影響,完整性差和施工質(zhì)量差所致。如果裂紋的上下邊緣的位置與上述相反,則通常是墩沿橋孔的方向滑動或旋轉(zhuǎn)。
(2)在主弓形環(huán)(平板弓形環(huán))或腹弓形環(huán)中出現(xiàn)縱向裂紋,如下圖所示。它通常伴隨著墩,平臺帽或帽梁的縱向裂縫。如果裂縫大致位于中間,則可能是橋墩和平臺基礎(chǔ)的上,下游沉降不均勻造成的。如果僅僅是側(cè)拱盒的接縫處的裂縫,那么接縫通常是不連接的。良好,完整性差,這是由于偏心載荷下側(cè)拱盒的更大力和變形所致;
(3)混凝土的碎裂和脫落發(fā)生在主拱環(huán)的局部,通常發(fā)生在具有高壓縮應(yīng)力的地方,例如拐角,等截面拱形拱的拱腳附近等??箟簭?qiáng)度材料不足,導(dǎo)致分裂或壓碎,或內(nèi)部鋼筋生銹和膨脹;
(4)主拱圈拱趾處的徑向裂紋主要是由于材料的抗剪強(qiáng)度不足引起的;
(5)雙曲拱橋的拱形波峰上出現(xiàn)縱向裂紋,或在拱肋和拱波的連接處出現(xiàn)圓形裂紋,這主要是由于肋骨之間的橫向連接薄弱,完整性差,截面組合不合理以及不均勻造成的。墩臺的橫向沉降等等
(6)拱的彎曲的框架,梁和柱破裂,特別是短柱的短端被破裂和壓碎,墩,基臺或?qū)嵭母拱褰孛娴母构h(huán)的拱腳和拱頂穿過側(cè)壁到橋面板的裂縫,以及側(cè)壁。側(cè)壁與拱形環(huán)之間的連接以及側(cè)壁中的其他裂縫如下圖所示。主要原因是短柱和腹弓環(huán)上沒有鉸鏈,相應(yīng)位置的側(cè)壁和橋面板上沒有變形縫,主弓環(huán)變形或墩臺位移and abutment pull and crack;
(7) Longitudinal cracks on the bridge deck are often accompanied by vertical cracks in the transverse connection, especially the severe cracks in the mid-span transverse connection, indicating that the horizontal integrity of the bridge is poor and the lateral load distribution is not good;
(8) When the main arch ring is assembled by segmented prefabrication, cracks may also appear at the joints;
(9) When steel tube concrete is used for arch ribs, there may be shrinkage folds on the surface of the steel tube, or there may be cavities and segregation in the tube. The thickness of the steel tube is often insufficient, the hoop effect is partially lost, and the steel tube lattice structure is unreasonably arranged, and the tube wall stiffening ribs Insufficiency and so on.
The optional reinforcement methods are:
(1) Because the main arch ring is an eccentric compression member, if the dome or arch foot transversely cracks or is partially crushed, it is best to use the method of increasing the section from the soffit surface or the back of the arch to reinforce it, such as chiseling the original concrete surface, Concrete or sprayed concrete is poured after planting and laying of reinforcements, especially for cracks at the arch foot, it is necessary to implant steel bars in the pier cap, and then increase the cross section of the arch foot, as shown in the following figure:
Secondly, it can be pasted with steel plate or fiber composite material, but it should be noted that the soffit pasting material is too long, and the problem of radial tearing after bending. In the medium and small span arch bridges, external prestressed reinforcement can also be considered, but the impact on other parts should be considered. It is also possible to reduce the self-weight of the building on the arch, such as replacing the filler, or digging out the filler and changing the side wall to a full open-web beam web hole to reduce the burden on the main arch ring, as shown in the figure below, but the main arch axis shape is somewhat different Change, pay attention to checking calculations. If the disease is caused by the displacement of the pier and abutment is still developing, the pier and abutment should be strengthened first to eliminate the cause of the disease.
(2) For the longitudinal cracks in the main arch ring or abdominal arch ring, the longitudinal cracks of the pier and platform cap and the vertical cracks of the pier and platform body, if the cracks continue to develop, the foundation and other substructures must be reinforced first. The arch ring cracks should be Depending on the width of the seam, grouting is used to block the cross section, and steel plate or fiber composite material is pasted horizontally. Or add multiple steel hoops, and try to make them into block hoops, or use steel tie rods, apply transverse prestress and other methods to reinforce, as shown in the figure below.
(3) For double-curved arch bridges, the longitudinal cracks at the top of the arch or the joint between the arch rib and the arch wave should be strengthened or added to the transverse connection, the arch rib or arch slab section or the number of arch ribs should be increased, and the weight of the building on the arch should be reduced, such as Replace the filler of the belly arch and solid web section, change the horizontal wall type web hole pier to the column type web hole pier, and change the arch type web hole to the beam-slab web hole, etc., as shown in the figure below. If the crack is caused by the uneven lateral settlement of the pier and platform, the foundation should be reinforced first.
(4) For the cracks at the upper and lower ends of the low column on the arch, it is best to change the neck hinge to allow it to rotate properly, as shown in the figure below. For the arch toe or vault crack near the pier and the solid web, if the crack is wide enough to break or there is a significant difference in height on both sides, it should be considered to be dismantled and rebuilt into a three-hinged or two-reamed web hole, otherwise Don't care about it for the time being, but the deformation joints of the side walls and bridge decks at the corresponding positions should be set up, otherwise there will be water leakage;
(5) For the longitudinal cracks of the bridge deck and the vertical cracks of the transverse connection, the transverse integrity of the structure should be strengthened, such as increasing or adding beams, combined with the refurbishment of the bridge deck, appropriately thickening the thickness of the concrete paving layer, increasing the markings, and strengthening the bridge deck For arch bridges with transverse reinforcement and fillers, the fillers will be excavated and replaced with cast-in-situ concrete for reinforcement;
(6) The cracks that are not good at the main arch ring joints can be strengthened by means of grouting, planting bar connection or repair welding connection;
(7) For the wrinkles on the surface of the concrete-filled steel tube, it is best to use a layer of reinforced concrete to increase the section, or to densify the slab between the lattice structures, or to increase the tube wall stiffener. For the voids in the pipes, drill holes should be filled with epoxy glue or cement slurry;
(8) For arch bridges with excessive deflection of the vault and lateral cracks on the bottom surface, external prestressed cables can be used to set anchors on the arch back below the elastic center of the arch ring to make the vault produce negative bending moments and inverted arches. As shown in the figure below, but the arch foot also produces a negative bending moment, the cross section of the arch foot section should be increased to deal with it. The specific position of the external cable and the tensile force should be tested repeatedly according to the changes in the internal force of the arch ring (mainly bending moment) Confirm after calculation;
(9) For rib arches, double-curved arches, etc., due to excessive deformation and cracking of the main arch ring due to the horizontal displacement and subsidence of the arch foot, and the arch axis and the pressure line are seriously deviated, the arch foot can be used when it is difficult to use other reinforcement measures. The method of pushing and restoring to adjust the arch axis improves the force of the arch ring, but this method has complex technology, high risk, and low cost, so it is rarely used.
(10) Among the above various reinforcement methods, if the building on the arch is modified or the section of the main arch ring is enlarged, attention should be paid to the balanced symmetry between the single hole and the multi-hole during the unloading and loading process to ensure the arch ring and pier The stability of the station.
8. Middle and through arch bridges
Middle and through arch bridges are ribbed arches, and the arch ribs are often reinforced concrete rectangular, I-shaped or box-shaped (the latter are more). Steel pipe or concrete-filled steel tube, or their combination is also commonly used. In terms of the force system, there are ordinary arches (that is, thrust arches) and tied arches (ie, no thrust arches). The main components of deck arch bridges are different from suspenders and suspender beams (some also have longitudinal beams). ,Tie. The boom has rigid boom and flexible boom, the latter is more used.
Tie rods are also divided into rigidity and flexibility. Mid-bearing (flying swallow) tie-bar arches usually use flexible high-strength steel wires as tie rods. Down-bearing tie-bar arches include flexible tie rod rigid arches, rigid tie rod rigid arches and rigid tie rod arches. The first two are more common in the difference of rod flexible arch. In addition to the diseases similar to deck arch bridges, there may also be the following diseases:
(1) The anchor head of the boom is loose, rusted, or the steel wire is corroded or sheared. The anchor head under the bridge deck and the anchor heads at both ends of the short boom are easy to appear;
(2) The suspender beam is used as a simply supported beam or a double cantilever simply supported beam. Reinforced concrete or prestressed concrete is commonly used. There may be vertical bending cracks at the bottom of the mid-span beam, and oblique cracks appear on the webs on both sides of the lifting point. In addition, longitudinal cracks may appear on the top surface of the beam at the lifting point, as shown in the figure below. The bridge deck with longitudinal beams between the suspenders and beams may crack near the nodes of the longitudinal and transverse beams and the nodes of the arch ribs and rigid tie rods;
(3) Looseness or corrosion of the anchor head of the tie rod, or corrosion or broken wire of the steel wire. Rigid tie rods are similar to elastically supported continuous beams because they have to withstand axial force and local bending moments, and they also have common problems with bending members.
The optional reinforcement methods are:
(1) If the anchor head of the suspender or tie rod is loose or individual slips, when conditions permit, the anchor head should be tightened to adjust the internal force or elevation of the loose tie rod or suspender. Most of the flexible suspenders use piers. The head anchor can be tightened by adding a steel spacer. If the tie rod uses a clip anchor, the heavy anchor should be supplemented. For booms or tie rods that are severely corroded, broken wires, or unconditionally tensioned and tightened, the cables should be replaced through reserved holes. If there are no reserved holes, other measures should be taken to temporarily unload the replaced booms or tie rods. Change the rope.
(2) The various cracks that appear in the boom beams, longitudinal beams or rigid tie rods can be reinforced like the reinforced concrete or prestressed concrete simple beams, continuous beams and cantilever beams in the previous sections of this chapter, such as external prestressing method , Pasting steel plate or fiber composite material method, etc.
(3) For the cracks of the longitudinal and transverse beam nodes and the arch foot nodes, the simple method is to paste the block steel plate or fiber composite material, as shown in the figure below.
9. Reinforced concrete rigid frame arch bridge
Under normal circumstances, the most common diseases of long-span rigid-framed arches are the cracks at the chords and rigid joints. As long as the rigid-framed arch bridges with diseases, most of them have such cracks, but for reinforced concrete members, as long as the crack width does not exceed The allowable value is also a normal use. Although there are many owners who are opposed to building a new rigid-frame arch bridge, through analysis of the causes of its diseases, the problems of its bearing capacity and performance should be treated correctly.
Alternative reinforcement methods for rigid frame arch bridges
The rigid frame arch bridge is mainly composed of outer chords, inner chords, solid webs, arch legs (main arch legs), diagonal braces (secondary arch legs), transverse connections, bridge decks and bridge deck pavement, as shown in the following figure. The following will discuss each component's disease phenomenon, its causes, and the reinforcement methods currently used one by one.
(1) Bridge decks: The decks of rigid frame arch bridges are commonly used in two types: less ribbed haunches or slightly curved plates. A few of them use rectangular solid or hollow slabs. The first two are optimized on the basis of rectangular slabs. The amount of steel and concrete is small and the weight is light. Especially the rib and haunches are hollowed out at the cost of complex construction. The less-reinforced rib axillary plate and micro-bend plate not only have less reinforcement, but also have a small thickness. They will definitely be no problem under short-term design loads. Under the condition of long-term overload, the actual bridge disease shows that the direction of the bottom of the ribbed plate is not correct. Regular cracks, severely exposed ribs and leaking water. If it is a micro-bending plate, the bottom surface of the stiffening rib of the micro-bending plate has a number of vertical cracks extending upward, some of which can extend to the top of the plate, causing the top of the plate to crack longitudinally.
The optional reinforcement methods for the above diseases are:
For the micro-bent slab with cracked stiffeners, a U-shaped unidirectional carbon fiber sheet with vertical cracks is used. It is more convenient to stick to the bottom of the rib than to stick the steel plate. The longitudinal cracks on the top of the micro-bent slab are filled and sealed depending on the width.
In combination with the reconstruction of the bridge deck, the thickness and strength of the cast-in-situ layer are increased, and the reinforcement in the cast-in-situ layer is strengthened to improve the stress condition of the bridge deck.
(2) Inner and outer chords and solid webs: chords and solid webs often use rectangular, I-shaped, box-shaped sections, the outer chords are bending members, and the inner chords and solid webs are bent (eccentrically). Compressed) components. Generally, the cracks produced by the arches often appear on the outer chord, followed by the inner chord and the solid web. Vertical cracks in the outer chord and oblique cracks on both sides of the large and small nodes are common, but the degree is different. Of course, if the crack width is within the allowable range, it also meets the design requirements or is not at the point where it must be reinforced. But for rigid frame arch bridges with serious diseases, there are many and wide cracks in the tension zone at the bottom of the mid-span of the outer chord and the solid web, and the inner chord has more cracks, some have penetrated in the horizontal direction, and cracked to the top in the vertical direction, especially the nodes. The diagonal cracks on both sides are wider, and some have penetrated.
The optional reinforcement methods are:
① For the reinforcement of the bending member of the outer chord of the rigid frame arch, if the chord is not a super-reinforced beam, the U-shaped fiber sheet or the steel plate can be pasted in the tension zone of the bottom surface or the section height and reinforcement can be increased. For super-reinforced beams, it is best to increase the section height and reinforcement, or to paste U-shaped fiber sheets or steel plates in the tension zone on the bottom surface, and increase the thickness of the cast-in-situ layer on the bridge deck.
② The inner chord is an eccentric compression member and can be reinforced by the same method as the outer chord.
③ The oblique cracks on both sides of the large and small nodes can be reinforced with steel plates or fiber sheets on the crack surfaces to withstand the main tensile stress. Increasing the height of the chord section can also reduce the main tensile stress.
④ U-shaped carbon fiber sheet can be pasted on the slightly arc-shaped bottom surface of the solid web in the mid-span to withstand the bending tensile stress and radial tearing force, or the method of increasing the section height and reinforcement can be adopted.
⑤ For the cracks in the chord and other parts of the solid abdomen, the cracks can be filled and sealed.
(3) Lateral connection: The lateral connection of a rigid frame arch bridge. There is one line between the chords and solid webs about 3 meters, and the nodes are strengthened. On the arch legs and diagonal braces, there are one or more channels according to the size of the span. The situation is relatively intact. However, rigid frame arches with integral damage are quite different. Most of the diaphragms of the solid web and chord sections have vertical cracks that penetrate up and down. The hollowed diaphragms are more serious than the solid diaphragms, especially There are many cracks in the transverse diaphragm of the solid web, and some of them are almost broken into only steel bars. The transverse connections on the arch legs and diagonal braces are generally intact. However, rigid frame arch bridges with gravity piers and abutments have few problems in the lateral connection, indicating that flexible piers should not be used for light arch bridges with low rigidity.
The optional reinforcement methods are:
① 中斷交通施工時,橫隔板可采用混凝土加固,即在原橫隔板的基礎(chǔ)上,通過植筋加厚加高橫隔板。
不能中斷交通施工時,橫隔板只有采用施工快速、簡便的鋼結(jié)構(gòu)加固,如下圖。在原混凝土橫隔板的四個角,采用粘貼和螺栓固定四根角鋼,再用兩片鋼桁架夾住原混凝土橫隔板,施工時作好所有橫隔板加固準(zhǔn)備工作,并點(diǎn)焊固定位置后,臨時中斷交通,將各鋼構(gòu)件焊接完成后,再恢復(fù)交通。
(4)主拱腿及斜撐:主拱腿和斜撐為小偏心受壓構(gòu)件,在恒載及車輛作用下,一般不產(chǎn)生拉應(yīng)力,其內(nèi)主要按構(gòu)造配筋。但有的斜撐底部附近有較多由頂面而下的環(huán)形裂縫,有的開裂至截面高度一半左右。采用有限元計(jì)算分析可知,使用荷載下,構(gòu)件不產(chǎn)生拉應(yīng)力,但在墩、臺不均勻沉降時,斜撐底部的負(fù)彎矩就非常敏感,較小的不均勻下沉,在此處將產(chǎn)生較大的拉應(yīng)力。實(shí)橋觀察也說明斜撐底部有裂縫出現(xiàn),極可能是墩、臺有不均勻沉降。此外,溫度下降時也容易產(chǎn)生斜撐底部的負(fù)彎矩。
可選的加固方法有:
對于斜撐根部的裂縫,可采用環(huán)形包裹粘貼纖維布,也可采用頂面粘貼鋼板或碳纖維條。也可考慮增大截面加固。
(5)橋面鋪裝層:橋面現(xiàn)澆層對采用預(yù)制拼裝施工的橋面板來說,尤為重要,以其它類型橋梁相比,剛架拱橋的混凝土鋪裝層是組合斷面的一部分,直接參與受力,更重要的是拱片大、小節(jié)點(diǎn)負(fù)彎矩區(qū)的受拉鋼筋都布置于現(xiàn)澆鋪裝層中。如果該位置所承受的拉應(yīng)力過大,將會導(dǎo)致橋面橫向貫通開裂,若橋梁整體性較差,還會引起橋面的拱片位置處縱向貫通開裂,這兩類裂縫均屬結(jié)構(gòu)受力性裂縫,必須盡快進(jìn)行加固。其他坑槽、網(wǎng)裂之類均屬鋪裝層本身局部病害。
可選的加固方法有:
① 鑿除橋面鋪裝,重新澆筑鋪裝層混凝土,按新規(guī)范要求提高混凝土標(biāo)號,加強(qiáng)橋面鋼筋網(wǎng)的配筋。并特別注意鋼筋網(wǎng)必須架起來。新澆鋪裝層的厚度,根據(jù)需要決定是否加厚。
② 進(jìn)一步加強(qiáng)負(fù)彎矩區(qū)的縱向鋼筋配置。
中等跨徑以下的桁架拱一般采用鋼筋混凝土,中等跨徑以上的桁架拱或桁式組合拱橋一般采用預(yù)應(yīng)力混凝土,它們均為組合體系拱,常采用預(yù)制拼裝施工。上弦桿及跨中實(shí)腹段除承受軸力外,還承受較大彎矩,下弦桿為偏心受壓構(gòu)件,腹桿有斜桿和豎桿,一般采用斜拉桿式腹桿,即斜桿為偏心受拉,豎桿為偏心受壓構(gòu)件。因此跨徑大時,需在上弦桿、斜桿及實(shí)腹段中施加預(yù)應(yīng)力。
常見問題有:
(1) 上弦桿及實(shí)腹段跨中附近底面及側(cè)面橫向開裂,或下?lián)线^大,表明桿件的**預(yù)加應(yīng)力不足,或截面高度偏小,普通鋼筋配置不足;
(2)斜桿開裂,說明拉力過大,預(yù)加應(yīng)力不足。
(3)下弦桿及豎桿沿桿長方向出現(xiàn)多條裂縫或局部壓碎,主要是桿件截面尺碼偏小。如果出現(xiàn)垂直于桿長方向的裂縫,說明桿件的長細(xì)比過大或桁架片變形較大引起較大偏心彎矩所致;
(4)各桿件節(jié)點(diǎn)附近開裂,由于各桿件軸線一般不會相交于一點(diǎn),且受其他附加應(yīng)力影響使節(jié)點(diǎn)局部應(yīng)力過大引起開裂,如圖:
(5)橫向聯(lián)系(如橫隔板、橫系梁、剪刀撐等)中部出現(xiàn)豎向裂縫或其它裂縫,主要是桁片橫向整體性差,橫向聯(lián)系剛度不足、尺碼偏?。?/div>
(6) 由于桁架拱采用預(yù)制拼裝施工,接頭較多,干接頭可能因焊接質(zhì)量或疲勞問題松脫,濕接頭也可能因接頭強(qiáng)度不足引起開裂;
(7)桁架拱橋的橋面板一般用鋼筋混凝土微彎板,鋼筋混凝土或預(yù)應(yīng)力混凝土矩形空心板或?qū)嵭陌?。桁式組合拱橋的橋面板常用鋼筋混凝土單向板或雙向板。其病害與上節(jié)剛架拱橋類似。
可選的加固方法有:
(1)對上弦桿、斜桿及實(shí)腹段裂縫,如果不太嚴(yán)重可采用粘貼鋼板或纖維復(fù)合材料方法加固,否則可采用體外預(yù)應(yīng)力加固,或結(jié)合增大截面,張拉體外預(yù)應(yīng)力索后用鋼筋混凝土包裹;
(2)對下弦桿及豎桿的裂縫,采用增大截面法加固,如果裂縫不太嚴(yán)重,可采用加鋼板箍或包裹纖維復(fù)合材料加固;
(3)對節(jié)點(diǎn)裂縫,可采用粘貼塊狀鋼板或纖維復(fù)合材料加固;
(4)對橫向聯(lián)系裂縫,采用加大橫向聯(lián)系截面尺碼,或增設(shè)橫向聯(lián)系,或施加橫向預(yù)應(yīng)力加固。如果開裂程度較輕,可采用局部粘貼鋼板或纖維復(fù)合材料加固;
(5)對各種施工接頭的裂縫,可采用補(bǔ)焊、灌縫、植入錨筋、粘貼鋼板等方法加強(qiáng)。
十一、圬工拱橋
(1)拱圈出現(xiàn)大面積的嚴(yán)重風(fēng)化剝落、灰縫脫空。原因是砌體和砂漿的材料差,或者受到腐蝕性強(qiáng)的水和氣體的浸蝕;
(2) 主拱圈拱頂下緣出現(xiàn)1~2條橫向貫通的裂縫,如果裂縫兩側(cè)有明顯高差,說明墩臺有不均勻下沉,若無明顯高差,但拱頂有少量下沉,則可能墩臺向橋孔外滑動或轉(zhuǎn)動,或由于拱圈承載力已不足引起,若拱頂上拱且下緣出現(xiàn)橫向壓碎裂紋,則可能墩臺向橋孔內(nèi)滑動或轉(zhuǎn)動;
(3)拱圈的個別拱石出現(xiàn)裂縫,灰縫脫落,壓碎或外凸;
(4)拱圈分層砌筑時,沿砌縫出現(xiàn)環(huán)向裂縫,這主要與施工時的砌筑工序,支架變形、砌縫處理及砂漿強(qiáng)度有關(guān);
(5)砌體表層沿砌縫無規(guī)則的開裂,主要是砂漿標(biāo)號低或砂漿不飽滿;
(7)拱上側(cè)墻沿拱圈的拱背開裂或脫離,主要是墩臺下沉,溫度變化或車輛作用時主拱圈與拱上建筑變形不協(xié)調(diào),或砌縫未處理好引起。
其它一些病害與鋼筋混凝土上承式拱橋類似。
可選的加固方法有:
(1)對砌體表層風(fēng)化剝落、灰縫脫空,可先鑿除松動的剝蝕層,露出新鮮面,用高標(biāo)號水泥砂漿填塞灰縫,視厚度分層涂抹或噴涂水泥砂漿修補(bǔ),砂漿中可添加一些化學(xué)纖維以增強(qiáng)抗裂性;
(2)對由于墩臺不均勻下沉引起的拱頂橫向裂縫,如果下沉還未穩(wěn)定,應(yīng)先加固墩臺基礎(chǔ),再對裂縫注水泥漿后,在拱腹下植筋,掛鋼筋網(wǎng)澆筑或噴射混凝土內(nèi)襯,增大拱圈截面加固。如果沉降基本終止,就只需加固拱圈,開裂不嚴(yán)重時,也可只灌漿封鎖。對由于墩臺滑動或轉(zhuǎn)動引起的拱頂裂縫,如果墩臺位移尚未停止,應(yīng)先加固墩臺,再對裂縫注漿封鎖后,可從拱腹或拱背澆筑鋼筋混凝土,增大截面加固。對由于承載能力不足引起的拱頂橫向裂縫及下沉,除可采用拱背或拱腹增大截面外,還可同時采用減輕拱上建筑自重來減少恒載,如實(shí)腹拱改空腹拱,如下圖1
將原填料更換為輕質(zhì)填料,改拱式腹孔為梁板式腹孔或全空腹式拱上建筑。對小跨徑拱橋還可在拱頂上澆筑一鋼筋混凝土簡支板或墊板,如下圖2,將原橋改為拱梁組合體系,以減輕主拱圈活載,提高承載力。以上加固中若墩臺負(fù)擔(dān)增加較多,應(yīng)考慮墩臺及基礎(chǔ)的承載力及穩(wěn)定是否滿足加固需要。
(3)拱圈個別拱石出現(xiàn)的病害,可鑿除壓碎部分,視裂縫寬度大小,用環(huán)氧膠、高標(biāo)號水泥砂漿或
環(huán)氧砂漿,灌縫或填縫,再用水泥砂漿或小石子混凝土修補(bǔ)。拱石嚴(yán)重碎裂的,要全部鑿除用混凝土填補(bǔ);
(4)主拱圈沿砌縫環(huán)向開裂時,采用鋼板或鑄件做成的楔形剪力鍵或抓釘豎向嵌入拱圈兩側(cè),開裂范圍大且嚴(yán)重時在拱圈上徑向鉆孔穿入長錨栓,適當(dāng)加壓后錨固,其間距布置視環(huán)向開裂程度而定,原裂縫用水泥漿灌縫封鎖,圖3;
(5)砌體表層砌縫開裂,可采用水泥砂漿灌縫封鎖或勾縫;
(6)拱上側(cè)墻外傾,視外傾程度,采用挖出墻內(nèi)填料更換成砂礫石、漿砌片石等較少側(cè)壓力的材料,對空腹式拱橋的腹拱側(cè)墻及實(shí)腹段側(cè)墻外傾,由于填料較少,可更換成低標(biāo)號混凝土。對實(shí)腹式拱橋也可采用加厚側(cè)墻尺碼,或者在兩側(cè)墻鉆孔設(shè)多根鋼拉桿對錨,如下圖4。還可改變拱上建筑形式不要側(cè)墻,如實(shí)腹式改空腹式等,如上圖1;
(7)拱上側(cè)墻沿拱背開裂或脫離,如果是基礎(chǔ)下沉引起并未終止的,應(yīng)先加固基礎(chǔ),再用高標(biāo)號水泥漿或砂漿灌縫封鎖。并檢查兩拱腳上方側(cè)墻上至橋面的伸縮縫是否**,否則可能引起拱上建筑與主拱圈變形不協(xié)調(diào)。其它病害的加固方法與鋼筋混凝土上承式拱橋類似。
自密實(shí)砂漿,
自密實(shí)混凝土,路面薄層修補(bǔ)材料,環(huán)氧修補(bǔ)砂漿,鋼筋防銹劑(滲透型),非收縮自流混凝土,混凝土抗裂壓實(shí)劑,聚合物改性防??水涂料,瀝青防水涂料,橋梁養(yǎng)護(hù)劑,懸索橋結(jié)構(gòu)膠,瀝青冷修補(bǔ)材料,路面裂縫修補(bǔ)劑,履帶砂漿,軸承灌漿材料,釘錨固劑,
重力砂漿,錨固砂漿,壓載膠,滲透性結(jié)晶防水涂料,超細(xì)水泥,地聚合物灌漿材料,清水混凝土保護(hù)劑,水利邊坡修補(bǔ)砂漿,
支座砂漿,風(fēng)力灌漿材料,C100風(fēng)力灌漿材料,C110風(fēng)力灌漿材料,C80風(fēng)力灌漿材料,C120風(fēng)力灌漿材料,鋼纖維灌漿材料,聚合物防水防腐蝕砂漿,有機(jī)高強(qiáng)度耐磨材料里亞爾,混凝土促進(jìn)劑